Marcus S. Parker Sr. PMP ${ }^{\circledR}$, LSSBB, CSM ${ }^{\circledR}$
February 10, 2015 American Society of Quality Baltimore, Maryland Section 0502

HOW QUALITY PROFESSIONAL'S CAN USE THE BASIC QUALITY TOOLS TO EFFECTIVELY COMMUNICATE TO EXECUTIVES

Key Definitions

Project: is a temporary endeavor undertaken to create a unique product, service, or result.

PMBOK ${ }^{\circledR}$ Guide-Fourth Edition

Project management: The application of knowledge, skills, tools and techniques to a broad range of activities to meet the requirements of a particular project

ASQ.org/glossary

Quality Management References

Process Improvement Methodology

Project Management Framework

Triple Constraints (TC + 3)

Triple Constraints (TC + 3)

PM must understand there are several ways to express Project Constraints

- Project Constraints represent limits on:

1. Available Skilled Resources
2. Budget
3. Scope
4. Quality
5. Schedule
6. Risk Factors

Triple Constraints Historically
 Scope/Schedule/Cost \&
 Quality

PMI ism
S/S/C
$S / S / C / Q$
$S / S / C / Q / R / R$

Bridging the Gap

Your poll will show here

2

Make sure you are in
Slide Show mode

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser

QAAM Do you know what the Seven Basic Quality Tools Are?

Start this poll to accept responses

Yes, I remember all of them

No, I can't seem to remember them all

11

Interactive Poll Results - 13 Yes, 53 No, and 4 Not Sure

Do You Know What The 7 Basic Quality Tools Are?
號 You may respond at PollEv.com/marcusparker635 when the presenter pushes this poll
(T) Text a CODE to 22333

Are you familiar with the Seven Basic Quality Tools?
\square Text a CODE to $22333 \square$ Submit responses at Pollev.com/marcusparker635
182234

182236
$\begin{array}{lllll}5 & 11 & 16 & 22 & 27\end{array}$

Are you familiar with the 7 Basic Quality Tools?
[] Text a CODE to 22333
\leftrightarrows Submit responses at Pollev.com/marcusparker635

PMI SSC Are You Familiar With The Seven Basic Quality Tools?
© Start this poll to accept responses

7 Basic Quality Tools

7 Basic Quality Tools

American Society of Quality

1) Check Sheet
2) Histogram
3) Pareto
4) Fishbone
5) Run Chart
6) Control Chart
7) Scatter Plot

Nancy R. Tague's The Quality Toolbox, Second Edition, ASQ Quality Press, 2005, page 15

Project Management Institute

1) SIPOC
2) Histogram
3) Pareto
4) Fishbone
5) Run Chart
6) Control Chart
7) Scatter Plot

PMBOK $5^{\text {th }}$ Edition, Project Management Institute, Chapter 8

Interactive Poll: ASQ Section 0502

Your poll will show here

Install the app from pollev.com/app

2

Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help

or
Open poll in your web browser
(start this poll to accept responses

(S)uppliers (I)nputs (P)rocess (O)utputs (C)ustomers

Overview:

When To Use:

Result:

(S)uppliers (I)nputs (P)rocess (O)utputs (C)ustomers

Overview- High-level Process Mapping Tool used to decompose complex process into 5 to 7 high level steps and identify (S)uppliers, (I)nputs, (O)Outputs and (C)ustomer's

When To Use- When you have a group of subject matter experts who know the process very well. It will help identify process characteristics such as Trigger Event, Gaps, Business Rules

Result- Team Building, Understanding of where further detail process mapping is required, relationships between Supplier's and Customer's, Inputs, and Outputs

(S)uppliers (1)nputs (P)rocess (O)utputs (C)ustomer				
${ }^{\frac{1}{2} \text { comemem }}$	${ }^{2} .0$ oram	\%memer		
1-6a	${ }^{\frac{1}{2}}$	\square		2.10 comer
${ }^{1.688}$	20	Uratio	${ }^{1}$ Compereosasat	${ }^{1.1}$
ixamemen	1 Composeosatas	maxtoras	1. fumbesosater	1.5 Stiporaseope
2.		spo orim		Smome

Histogram

Overview:

When To Use:

Result:

Histogram

Overview- Bar chart that displays the frequency, distribution, and central tendency of a data set over a period of time

When To Use- To identify changes or shifts in the process and understand variation. Used also to determine if the process is capable of meeting customers requirements

Result- With enough data if can represent the populations, can interpret centering variation or spread, is the shape "normal" or "skewed", and process capability

Pareto Chart

Overview:

When To Use:

Result:

Pareto Chart

Overview- Named after Vilfredo Pareto, a 19 th
Century Italian economist who postulated that large share of wealth is owned by a small percentage of the population. It is a series of bars whose heights reflect the frequency or impact of problems

When To Use- It breaks down big problems down into manageable pieces. Its helps identify the "vital few" problems for the team to focus on

Result- 80\% of the issues/problems are generated by 20% of the process steps

Ishikawa Fishbone Diagram

Overview:

When To Use:

Result:

Ishikawa Fishbone Diagram

Overview- Cause-and-Effect diagram to provide structure to cause identification, ensures that balance list of ideas have been generated during brainstorming

When To Use- Once a focused operational definition of the problem exist, or during braining storming to prevent future problems from happening (proactive)

Result-Allows focused discussion of most critical causes for further investigation

Run Chart

Overview:

When To Use:

Result:

Run Chart

Overview- Is a time series plot used to show data points in the order in which they occur, also shows how the process changes over time

When To Use- When getting to know the process, easy to construct b/c you don't know as many points for a control chart

Result- Used to detect trends in the data, also can easily see significant changes in the data which can be attributed to the underlying process

Control Chart

Overview:

When To Use:

Result:

Control Chart

Overview- Similar to run charts, but also displays the average, control limits (Upper \& Lower) which are ± 3 standard deviations of the average (99.7\% of the points in normally distributed data will fall between the limits

When To Use- To establish a process measurement baseline, detect special cause variation, ensure process stability, and enable predictability

Result- Continuous or Discrete Data Analysis

 $I-M R=$ large sample sixe for more sensitive charts
X-s Chart P Chart u Chart np Chart
c Chart

Scatter Plot Diagram

Overview:

When To Use:

Result:

Scatter Plot Diagram

Overview- A graphic that shows correlation between tow variables through patterns in data

When To Use- To determine if there is a statistical relationship between two independent variables

Result- No Correlation, Positive Correlation, Negative Correlation, Other

CASE STUDIES- APPAREL PRODUCT DIRECTOR

1. Customer Service Order Entry Errors: Credit Notes on Invoices
2. Daily Order and Shipping Analysis

Customer Service Order Entry Errors: Credit Notes(\$144K)

SIPOC HISTOGRAM PARETO FISHBONE

(S)uppliers (I)nputs (P)rocess (O)utputs (C)ustomer

5 Suppliers	(4) Inputs	Process	Outputs 2	Customer 3
1. Customer	1. Order (Trigger) 2. Samples	Customer Sends Order \qquad v	1. Purchase Order	1. Customer Service Rep (CSR)
1. Customer 2. Sales Rep	1. Purchase Order	Customer Service Enters Order	1. Order Number	1. CSR 2. Warehouse 3. Accounting
1. CSR	1. Order QTY \& Style 2. Ship Date	Order Acknowledgement	1. Qty 2. Style 3. Ship Date 4. Price	1. Customer
1. CSR	1. P.O\# 4. Ship Method 2. Customer 5. Shipper \# Address 3. Style/Color/QTY	Upload to Warehouse	1. Complete Order	1. Warehouse
1. Warehouse Management Sys.	1. Complete Order	Warehouse Pick's Order	1. Fulfilled order	1. Shipping Dept.
1. Warehouse	1. Packaged Order	Ship Order Customer Receives Order	1. Tracking \# 2. Email CSR-POD	1. Customer 2. CSR 3. Accounting

SIPOC on Whiteboard

Raw Data Credit Note (credit on invoice)

Category Count
Order Entry 153
Customer Error 108
Customer no longer wants 95
Warehouse Error or Mispick 75
Price Error 73
Duplicate Order 44
Damaged or poor Quality 35
Cust Accommodation 32
3rd Party Shipper Missed 21
Shipped Late 17
No Reason Given 11
Size Mislabeled 11
UPS Issue 10
W coast frt deal 9
Re Error 6
Did Not Like 4
B/O xlled then shipped 4
Colors Off 1

Histogram-Credit Note (credit on invoice)

Graphical Summary of Count Summary Report

Distribution of Data
Examine the center, shape, and variability.

Descriptive Statistics

N	18
Mean	39.389
StDev	43.745
Minimum	1
Sth percentile	$*$
25th percentile	8.25
Median	19
75th percentile	73.5
95th percentile	$*$
Maximum	153

95\% Confidence Intervals

Mean	$(17.635,61.143)$
Median	$(9.5180,57.979)$
StDev	$(32.826,65.581)$

Pareto Analysis-Credit Notes

Iskikawa Fishbone-Credit Notes

Results from Credit Note Improvement Effort

- 10\% Reduction in Credit Notes

Quality Tools

- System Configured w color in numerical order

SIPOC

Histogram

- Created SOP’s (Standard Work)
- PO Entry
- Return Authorization Process
- Updated Computers

Pareto

- Updated Software

Fishbone

Daily Order and Shipping Analysis

RUN CHART CONTROL CHART SCATTER PLOT

Raw Data Daily Order and Shipping

1	3/24/2014	3/25/2014	3/26/2014	3/27/2014	3/28/2014	3/31/2014	4/1/2014	4/2/2014	4/3/2014	4/4/2014	4/7/2014	4/8/2014	4/9/2014	4/10/2014	4/11/2014
2	12	17	2	1	1	7	7	2	12	3	24	3	4	5	50
3	1	12	340	1	21	1	1	14	1	1	4	8	25	11	3
4	1	4	4	1	1	44	2	22	3	5	1	16	4	8	2
5	4	2	4	10	1	3	5	4	11	2	25	7	9	11	1
6	5	12	1	6	1	3	5	1	8	6	2	28	24	1	8
7	5	12	2	1	3	4	2	2	1	12	3	34	107	4	3
8	17	120	6	6	3	4	1	1	10	12	1	44	132	9	3
9	5	3	3	6	1	,		2	1	6	44	84	180	2	4
10	2	13	3	23	1	21	36	100	2	11	48	185	1	15	3
11	54	10	4	1	30	12	1	2	1	1	4	2	62	48	6
12	6	6	5	38	35	10	13	2	6	4	48	9	6	1	6
13	4	1	191	82	50	14	2	5	2	1	50	2	8	4	2
14	49	18	44	11	10	2	1	40	1	3	2	1	2	1	4
15	8	3	12	1	34	23	1	1	4	4	80	6	4	2	5
16	24	413	6	2	6	112	13	44	26	5	5	21	3	1	6
17	84	2	10	2	50	6	1	87	10	1	6	1	3	6	2
18	6	5	169	1	18	3	66	2	1	1	2	8	30	1	1
19	9	30	24	2	2	1	7	11	16	4	1	2	2	8	1
20	11	2	1	1	12	15	18	8	37	4	4	22	1	4	4
21	24	44	1	4	12	36	190	8	13	14	23	10	9	168	43
22	6	5	4	12	2	25	31	2	3	25	33	1	41	130	9

Run Chart

Time Series Plot of 4/9/2014

Control Chart

I-MR Chart of Order Qty
 Stability Report

Is the process mean stable?
Investigate out-of-control points. Look for patterns and trends.

Is the process variation stable?
Investigate out-of-control points. Look for patterns and trends.

Scatter Plot

Scatter Plot

Results from Daily Order and Shipping Improvement

- Setup cut off times
- Noon for order >50 (ship next day)

Quality Tools

- 2pm for order <50 (same day)
- Added resources on day crew

Run Chart

- Added night crew to process orders

Control Chart

Scatter plot

- Determined there is an relationship between
- Avg. Number of Units per day is 1431 Units

7 Basic Quality Tools

Had a positive impact on the business by providing the Product Director the data analysis tools to make fact based decisions

Fact Based Management

Process-Data-Analysis-Results

7 Basic Tools Dashboard for Continuous Improvement

Thanks for your time and participation QUESTIONS

REFERENCES:

Body of Knowledge-Six Sigma Black Belt Certification -CSSBB
Project Management Body of Knowledge (PMBOK 5 ${ }^{\text {th }}$ edition)
American Society of Quality
Lean Six Sigma Pocket Tool Book (2005)
Data Courtesy of Dynamic Design

Team Building

KUERIG SIPOC EXERCISE

Team Building Exercise

KUERIG FISHBONE DIAGRAM

Team Building

KUERIG SIPOC EXERCISE

